Chemguide - questions

HALOGENOALKANES: GRIGNARD REAGENTS

- 1. Grignard reagents are made by adding a halogenoalkane to small bits of magnesium in a flask containing ethoxyethane (commonly called diethyl ether or just "ether"). The flask is fitted with a reflux condenser, and the mixture is warmed over a water bath for 20 30 minutes.
 - a) Write the structure for the Grignard reagent formed if you did this starting from
 - (i) 1-bromopropane,
 - (ii) 2-bromopropane.
 - b) Everything has to be perfectly dry because Grignard reagents react with water. Write the equation of the reaction between water and the Grignard reagent formed from 1-bromopropane.
 - c) Explain the reason for using a reflux condenser, and the fact that the water bath mustn't be kept warm using a bunsen burner or any other naked flame.
- 2. a) Suppose you passed dry carbon dioxide through a solution of the Grignard reagent CH₃CH₂MgBr prepared as above.
 - (i) Draw the structure of the initial product.
 - (ii) Draw the structure of the final organic product after this solution has been treated with water in the presence of a dilute acid.
 - b) Grignard reagents are used to make alcohols of varying complexity, by reactions with carbonyl compounds (compounds containing the C=O group). The Chemguide page gives the following general reactions starting from CH₃CH₂MgBr. R and R' are alkyl groups or hydrogen.

Adding acid to this gives

Draw the structures of the alcohols formed if you reacted CH₃CH₂MgBr with

(i) methanal:
$$C = O$$

Chemguide - questions

(ii) propanal:
$$CH_3CH_2$$
 $C=O$

(iii) propanone:
$$CH_3$$

 $C=O$
 CH_3

(iv) butanone:
$$CH_3CH_2$$

 $C=O$
 CH_3

c) Using a Grignard reagent of your own choosing (not necessarily CH_3CH_2MgBr), how would you make a sample of the alcohol 2-methylpropan-2-ol?

The structure of 2-methylpropan-2-ol is
$$CH_3$$
 CH_3 - C -OH CH_3